
© 2010 Bennett, McRobb and Farmer 1

Object Interaction –
Sequence Diagrams

Based on Chapter 9
Bennett, McRobb and Farmer

Object Oriented Systems Analysis
and Design Using UML

4th Edition, McGraw Hill, 2010

© 2010 Bennett, McRobb and Farmer 2

In This Lecture You Will Learn:

• how to develop object interaction from use
cases;

• how to model object interaction using an
interaction sequence diagram;

• how to cross-check between interaction
diagrams and a class diagram.

© 2010 Bennett, McRobb and Farmer 3

Object Messaging

Objects communicate by sending messages.
Sending the message getCost() to an Advert
object, might use the following syntax.

currentadvertCost = anAdvert.getCost()

:Campaign anAdvert:Advert

getCost

© 2010 Bennett, McRobb and Farmer 4

Resilience of
Design

Real-world
requirements

Application that caters
for these requirements

Equivalent areas of
change—a highly
resilient system.

A small change in
requirements causes a much
greater change in
software—not a resilient
system.

Real-world
requirements

Application that caters
for these requirements

© 2010 Bennett, McRobb and Farmer 5

Interaction & Collaboration

• A collaboration is a group of objects or
classes that work together to provide an
element of functionality or behaviour.

• An interaction defines the message
passing between lifelines (e.g. objects)
within the context of a collaboration to
achieve a particular behaviour.

© 2010 Bennett, McRobb and Farmer 6

Modelling Interactions

• Interactions can be modelled using various
notations
– Interaction sequence diagrams

– Communication diagrams

– Interaction overview diagrams

– Timing diagrams

© 2010 Bennett, McRobb and Farmer 7

Sequence Diagrams

• Shows an interaction between lifelines (e.g.
objects) arranged in a time sequence.

• Can be drawn at different levels of detail and to
meet different purposes at several stages in the
development life cycle.

• Typically used to represent the detailed object
interaction that occurs for one use case or for
one operation.

© 2010 Bennett, McRobb and Farmer 8

Sequence Diagrams

• Vertical dimension shows time.
• Objects (or subsystems or other connectable

objects) involved in interaction appear
horizontally across the page and are
represented by lifelines.

• Messages are shown by a solid horizontal
arrow.

• The execution or activation of an operation is
shown by a rectangle on the relevant lifeline.

© 2010 Bennett, McRobb and Farmer 9

Sequence diagram

:Client :Campaign :Advert

getName

listCampaigns

listAdverts

Advert
newAd:Advert

addNewAdvert

Lifeline Activation or Execution Object creation

:CampaignManager

sd Add a new advert to a campaign

loop

loop

Interaction Operator

Interaction Constraint

Combined Fragment
(loop)[For all client’s campaigns]

getCampaignDetails

[For all campaign’s adverts]

getAdvertDetails

Sequence
diagram
is enclosed in a
frame

Frame label

© 2010 Bennett, McRobb and Farmer 10

Sequence Diagram

• Iteration is represented by combined fragment
rectangle with the interaction operator ‘loop’.

• The loop combined fragment only executes if the
guard condition in the interaction constraint
evaluates as true.

• Object creation is shown with the construction
arrow (dashed) going to the object symbol for
the Advert lifeline.

© 2010 Bennett, McRobb and Farmer 11

Synchronous Message

• A synchronous message or procedural call
is shown with a full arrowhead, causes the
invoking operation to suspend execution
until the focus of control has been returned
to it.

© 2010 Bennett, McRobb and Farmer 12

Further Notation

:LifelineA :LifelineB
Synchronous
(blocking)
message

sd Interaction Name

msg a
Send message
Event Occurrence
(msg.sendEvent)

Receive messaged
Event Occurrence
(msg.recieveEvent)

start of
Execution Occurrence

end of
Execution Occurrence

Execution Occurrence

Active

State on lifeline showing
pre-condition

Message reply
showing return of
control

© 2010 Bennett, McRobb and Farmer 13

Boundary & Control Classes

• Most use cases imply at least one boundary
object that manages the dialogue between the
actor and the system – in the next sequence
diagram it is represented by the lifeline
:AddAdvertUI

• The control object is represented by the lifeline
:AddAdvert and this manages the overall
object communication.

© 2010 Bennett, McRobb and Farmer 14

:Client :Campaign :Advert

listCampaigns

listAdverts

Advert
newAd:Advert

:CampaignManager

sd Add a new advert to a campaign

loop

loop

:AddAdvertUI

:AddAdvert

addNewAdvert

getClient

selectClient

loop

selectCampaign

addNewAdvert

getCampaignDetails

startInterface

[For all clients]

showClientCampaigns

showCampaignAdverts

createNewAdvert

[For all client’s campaigns]

[For all campaign’s adverts]

getAdvertDetails

Boundary
lifeline

Control
lifeline

© 2010 Bennett, McRobb and Farmer 15

Object Destruction

listAdverts

deleteAdvert

Object destruction

:Campaign :Advert

delete

getAdvertDetails

X

loop

sd Delete advert

© 2010 Bennett, McRobb and Farmer 16

Reflexive Messages

:Client :Campaign :Advert

getName

listCampaigns

checkCampaignBudget

getCampaignDetails

getCost

:CampaignManager

sd Check campaign budget

loop

loop

getOverheads

[For all client’s campaigns]

[For all campaign’s adverts]

Reflexive
message

© 2010 Bennett, McRobb and Farmer 17

Focus of Control

• Indicates times during an activation when
processing is taking place within that object.

• Parts of an activation that are not within the
focus of control represent periods when, for
example, an operation is waiting for a return
from another object.

• May be shown by shading those parts of the
activation rectangle that correspond to active
processing by an operation.

© 2010 Bennett, McRobb and Farmer 18

Focus of Control

:Client :Campaign :Advert

getName

listCampaigns

checkCampaignBudget

getCampaignDetails

getCost

:CampaignManager

sd Check campaign budget

loop

loop

getOverheads

budget =
checkCampaignBudget

[For all client’s campaigns]

[For all campaign’s adverts]

Shading showing the
focus of control

Reply with the return-
value shown

© 2010 Bennett, McRobb and Farmer 19

Reply Message

• A reply message returns the control to the
object that originated the message that
began the activation.

• Reply messages are shown with a dashed
arrow, but it is optional to show them at all
since it can be assumed that control is
returned to the originating object at the
end of the

© 2010 Bennett, McRobb and Farmer 20

Object Selector Notation

:Client campaign[i]
:Campaign

advert[j]
:Advert

getName

listCampaigns

checkCampaignBudget

getCampaignDetails

getCost

:CampaignManager

sd Check campaign budget

loop

loop

getOverheads

[i=1;i<=campaign.count; i++]

[j=1;j<=advert.count; j++]

Object selector notation

Interaction constraint refers
to variable used in object
selector notation

© 2010 Bennett, McRobb and Farmer 21

Interaction Operators

:Client campaign[i]
:Campaign

advert[j]
:Advert

getName

listCampaigns

checkCampaignBudget

getCampaignDetails

getCost

:CampaignManager

sd Check campaign budget

getOverheads

loop (1, *)

Interaction Operator
with parameters

loop (1, *)

[i<=campaign.count]

[j<=advert.count]

© 2010 Bennett, McRobb and Farmer 22

:Client :Campaign :Advert

getName

listCampaigns ref

ref

:CampaignManager

Advert

addCostedAdvert

newAd:Advert

newRequest:Request

alt

[else]

sd Add a new advert to a campaign if within budget

List client campaigns

[totalCost <= budget]

Request

Get campaign budget

alt interaction operator
shows branching

Two interaction operands,
one for each alternative

© 2010 Bennett, McRobb and Farmer 23

Handling Complexity

• Complex interactions can be modelled
using various different techniques
– Interaction fragments

– Lifelines for subsystems or groups of objects

– Continuations

– Interaction Overview Diagrams (see later
lecture)

© 2010 Bennett, McRobb and Farmer 24

Using Interaction Fragments

:Client :Campaign :Advert

getName

listCampaigns

:CampaignManager

sd Check campaign budget

ref

ref

Gate showing the
message enter this
interaction occurrence

List client campaigns

Get campaign budget

ref interaction operator
indicates interaction
occurrence that
references an interaction
fragment

© 2010 Bennett, McRobb and Farmer 25

Interaction Fragment

:Client :Campaign

listCampaigns

getCampaignDetails

sd List client campaigns

loop

Gate showing the
message enter this
Interaction Fragment

[For all client’s campaigns]

Interaction fragment that is
referenced in
Check campaign budget
sequence diagram

© 2010 Bennett, McRobb and Farmer 26

Interaction Fragment

:Campaign :Advert

getCost

sd Get campaign budget

loop

getOverheads

checkCampaignBudget

:CampaignManager

[For all campaign’s adverts]

Interaction fragment that is also
referenced in
Check campaign budget
sequence diagram

© 2010 Bennett, McRobb and Farmer 27

:ClientCampaigns
ref ClientCampaignAds

listCampaigns

listAdverts

:CampaignManager

sd Add a new advert to a campaign

:AddAdvertUI

:AddAdvert

addNewAdvert

getClient

selectClient

loop

selectCampaign

[For all clients]

showClientCampaigns

startInterface

showCampaignAdverts

addNewAdvert
createNewAdvert

Lifeline representing the
interaction between a
group of objects

© 2010 Bennett, McRobb and Farmer 28

:Client :Campaign :Advert

listCampaigns

listAdverts

Advert newAd:Advert

sd ClientCampaignAds

loop

loop

addNewAdvert

getClient

[For all client’s campaigns]

getCampaignDetails

[For all campaign’s adverts]

getAdvertDetails

Sequence diagram
referenced in the
Add a new advert to
a campaign sequence
diagram

© 2010 Bennett, McRobb and Farmer 29

Using Continuations

getCost

getCost

Within budget

Budget spentBudget spent

:LifelineA :LifelineB :LifelineC

alt

sd Calculate costs

[else]

ref Identify under spend

[Within budget]

Within budget

:LifelineA :LifelineB :LifelineC

ref

alt

sd Authorize expenditure

[else]

authorize

stopExpenditure

[Within budget]

Calculate costs

Continuations are used to link
sequence diagrams

© 2010 Bennett, McRobb and Farmer 30

Asynchronous Message

• An asynchronous message, drawn with an
open arrowhead, does not cause the
invoking operation to halt execution while
it awaits a return.

© 2010 Bennett, McRobb and Farmer 31

Further Notation

:ClassA :ClassB

{t..t + 28}

t = now Asynchronous
message with
duration
constraint

Callback

Duration
constraint

An active
object

sd Interaction Name

{d..d*3}

Duration
observation

Time
constraint
using
construction
marks

Note explaining some
aspect of this
execution occurrence

© 2010 Bennett, McRobb and Farmer
32

Interaction Operators
Interaction
Operator

Explanation and use

alt Alternatives represents alternative behaviours, each choice of behaviour being shown in a separate
operand. The operand whose interaction constraint is evaluated as true executes.

opt Option describes a single choice of operand that will only execute if its interaction constraint evaluates
as true.

break Break indicates that the combined fragment is performed instead of the remainder of the enclosing
interaction fragment.

par Parallel indicates that the execution operands in the combined fragment may be merged in any
sequence once the event sequence in each operand is preserved.

seq Weak Sequencing results in the ordering of each operand being maintained but event occurrence from
different operands on different lifelines may occur in any order. The order of event occurrences on
common operands is the same as the order of the operands.

strict Strict Sequencing imposes a strict sequence on execution of the operands but does not apply to nested
fragments.

neg Negative describes an operand that is invalid.

critical Critical Region imposes a constraint on the operand that none of its event occurrences on the lifelines
in the region can be interleaved.

ignore Ignore indicates the message types, specified as parameters, that should be ignored in the interaction.

consider Consider states which messages should be consider in the interaction. This is equivalent to stating that
all others should be ignored.

assert Assertion states that the sequence of messaging in the operand is the only valid continuation.

loop Loop is used to indicate an operand that is repeated a number times until the interaction constraint for
the loop is no longer true.

© 2010 Bennett, McRobb and Farmer 33

Guidelines for Sequence Diagrams

1. Decide at what level you are modelling
the interaction.

2. Identify the main elements involved in
the interaction.

3. Consider the alternative scenarios that
may be needed.

4. Identify the main elements involved in
the interaction.

© 2010 Bennett, McRobb and Farmer 34

Guidelines for Sequence Diagrams

5. Draw the outline structure of the
diagram.

6. Add the detailed interaction.
7. Check for consistency with linked

sequence diagrams and modify as
necessary.

8. Check for consistency with other UML
diagrams or models.

© 2010 Bennett, McRobb and Farmer 35

Model Consistency

• The allocation of operations to objects must
be consistent with the class diagram and the
message signature must match that of the
operation.
– Can be enforced through CASE tools.

• Every sending object must have the object
reference for the destination object.
– Either an association exists between the classes or another

object passes the reference to the sender.
– This issue is key in determining association design (See Ch.

14).
– Message pathways should be carefully analysed.

© 2010 Bennett, McRobb and Farmer 36

Model Consistency

• All forms of interaction diagrams used
should be consistent.

• Messages on interaction diagrams must
be consistent with the state machine for
the participating objects.

• Implicit state changes in interactions
diagrams must be consistent with those
explicitly modelled in state machine.

© 2010 Bennett, McRobb and Farmer 37

Summary

In this lecture you have learned about:

• how to develop object interaction from use
cases;

• how to model object interaction using an
interaction sequence diagram;

• how to cross-check between interaction
diagrams and a class diagram.

© 2010 Bennett, McRobb and Farmer 38

References

• UML Reference Manual (OMG, 2009)

• Bennett, Skelton and Lunn (2005)

(For full bibliographic details, see Bennett,
McRobb and Farmer)

